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Abstract— As is well known in many applications, approxima-
tion by local interpolating splines is preferable to approximation by
interpolating polynomials or interpolating by other types of splines.
Sometimes the values of integrals over net intervals besides the
values of the function in the nodes are known. In this case we can
use integro-differential splines. The main features of these splines
are the following: the approximation is constructed separately for
each grid interval (or elementary rectangular), the approximation
constructed as the sum of products of the basic splines and the values
of function in nodes and/or the values of its derivatives and/or the
values of integrals of this function over subintervals. Basic splines
are determined by using a solving system of equations which are
provided by the set of functions. In this paper we present the estima-
tion of approximation and the algorithm for constructing an interval
extension of approximation when values of function in nodes, values
of its first derivative in nodes, and values of its integrals over net
intervals are given. The algorithm of approximation is based on the
method of approximating functions using integro-differential splines.
For obtaining the derivatives of the function we use the derivatives
of the basic functions. For constructing the approximation of the
function of two variables we use tensor product. For constructing
the derivatives of the approximation of the function of two variables
we use derivatives of basic functions. For constructing this interval
extension, we use techniques from interval analysis. The errors of
approximation are given for the approximations with the middle, left
and right integro-differential polynomial splines of the fifth order.
Numerical examples are given.

Keywords— Integro-differential splines, Approximation,
Polynomial interval extension, Tensor production

I. INTRODUCTION

A lot of research papers have been published to date on
interval mathematics. By using interval arithmetic and

interval-valued functions, we can compute arbitrarily sharp
upper and lower bounds on ranges of function values (see [1],
[7], [9]–[13]). The problem of interpolating functions was in-
vestigated by [5]–[8], [10]–[15]. In many cases, approximation
by local interpolating splines is preferable to approximation
by interpolating polynomials or interpolating by other types
of splines.

This paper deals with the interval extensions of integro-
differential splines of the fifth order (see [2]–[4]). The value of
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approximation by the splines can be calculated for every point
if the values of the function, the values of its first derivative,
and the values of the integral of the function over the net
intervals are given.

II. APPROXIMATION OF THE FUNCTION

Suppose that n,m are natural numbers, while a, b, c, d
are real numbers. Let the function u(x) be such that u ∈
C5([a, b]). We have the grid of interpolation nodes {xj} such
that x0 = a, xj+1 = xj + hj , xn = b.

Suppose that u(xj), u′(xj), j = 0, 1, . . . , n,
∫ xj+1

xj
u(ξ)dξ,

j = 0, . . . , n− 1, are known. We denote ũ(x) as an approxi-
mation of the function u(x) in the interval [xj , xj+1] ⊂ [a, b]:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

+

xj+1∫
xj

u(ξ)dξ ω<0>
j (x). (1)

We obtain the basic splines ωj,0(x), ωj+1,0(x), ωj,1(x),
ωj+1,1(x), ω<0>

j (x) from the system:

ũ(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5. (2)

If x = xj + t hj , t ∈ [0, 1], then the basic splines can be
written in the form:
ωj,0(xj + t hj) = −(1 + 5t)(−1 + 3t)(t− 1)2,
ωj+1,0(xj + t hj) = −t2(−2 + 3t)(−6 + 5t),
ωj,1(xj + t hj) = −(1/2)thj(5t− 2)(t− 1)2,
ωj+1,1(xj + t hj) = (1/2)t2hj(t− 1)(5t− 3),
ω<0>
j (xj + t hj) = 30t2(t− 1)2/hj .

Let ∥u∥ = ∥u∥[xj ,xj+1] = max
[xj ,xj+1]

|u(x)|.

Lemma 1. Let function u ∈ C(5)[a, b]. The next statement is
valid:

|u(x)− ũ(x)| ≤ K0h
5
j∥u(5)∥[xj ,xj+1], x ∈ [xj , xj+1],

K0 = 0.00076.
Proof. Using Taylor’s series expansion of u(xj+1),

u′(xj+1), u(t) about the point x and relations (2), we obtain

ũ(x)− u(x) = I1 + I2 + I3,

where

I1 =
1

4!

∫ xj

x

(xj − ν)4u(5)(ν)dν ωj,0(x)+
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1

3!

∫ xj

x

(xj − ν)3u(5)(ν)dν ωj,1(x),

I2 =
1

4!

∫ xj+1

x

(xj+1 − ν)4u(5)(ν)dν ωj+1,0(x)+

1

3!

∫ xj+1

x

(xj+1 − ν)3u(5)(ν)dν ωj+1,1(x),

I3 =
1

4!

∫ xj+1

xj

∫ ξ

x

(ξ − ν)4u(5)(ν)dνdξ ω<0>
j (x).

We denote x = xj + thj , t∈[0, 1], ν = xj + τhj , τ∈[0, 1],
ξ = xj + Thj , T ∈ [0, 1]. Now we have

I1 =
h5
j

4!

∫ t

0

Ψ1(t, τ)u
(5)(xj + τhj)dτ,

where Ψ1(t, τ) = (−1)τ4ωj,0(t) + 4τ3 ωj,1(t)/hj .

I2 =
h5
j

4!

∫ 1

t

Ψ2(t, τ)u
(5)(xj + τhj)dτ,

where Ψ2(t, τ) = (1−τ)4ωj+1,0(t)+4(1−τ)3 ωj+1,1(t)/hj .

I3 =
h5
j

4!

∫ 1

0

∫ T

t

Ψ3(t, τ)u
(5)(xj + τhj)dτdT,

where Ψ3(t, τ) = (T − τ)4ω<0>
j (t)hj .

It can be found easily that Ψ1(t, τ) has a root at τ∗ =
2(5t−2)t/(−2t−1+15t2) and if t ∈ [0.4, 1] then τ∗ ∈ [0, t].
Thus if t ∈ [0.4, 1] then

I1 =
h5
j

4!

∫ τ∗

0

Ψ1(t, τ)u
(5)(xj + τhj)dτ+

h5
j

4!

∫ t

τ∗
Ψ1(t, τ)u

(5)(xj + τhj)dτ.

We obtain

F1(t) =

∫ τ∗

0

Ψ1(t, τ)dτ =
−8(5t− 2)5(t− 1)2t5

5(1 + 5t)4(3t− 1)4
,

and max
t∈[0.4,1]

|F1(t)| ≈ |F1(0.7339)| = 0.000316.We obtain

F2(t)=

∫ t

τ∗
Ψ1(t, τ)dτ=

9(t− 1)2t5(−4t+ 1 + 5t2)2

10(1 + 5t)4(3t− 1)4
×

(6750t6 + 675t5 − 1740t4 − 586t3 − 18t2 + 267t− 56), and
max

t∈[0.4,1]
|F2(t)| ≈ |F2(0.81125)| = 0.00555.
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Fig. 1. F1(t), t ∈ [0.4, 1] (left), F2(t), t ∈ [0.4, 1] (right)

If t ∈ [0, 0.4] then

F3(t) =

∫ t

0

Ψ1(t, τ)dτ =
t5

10
(30t2 − 29t+ 8)(t− 1)2,
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Fig. 2. F3(t), t ∈ [0, 0.4] (left), F4(t), t ∈ [0.6, 1] (right)

and max
t∈[0,0.4]

|F3(t)| ≈ |F3(0.4)| ≈ 0.00044. Finally

|I1| ≤ 0.0058
h5
j

4!
∥u(5)∥.

Similarly Ψ2 has a root in
τ∗ = (5t2−12t+6)

(15t2−28t+12) , and τ∗ ∈ [t, 1] if t ∈ [0, 3/5], and
Ψ2 has no roots if t ∈ [3/5, 1], so Ψ2 of constant signs if
t ∈ [3/5, 1].

When t ∈ [3/5, 1] then

F4(t) =

∫ t

0

Ψ2(t, τ)dτ =
t2

10
(30t2 − 31t+ 9)(t− 1)5.

Thus,

|I2| ≤
h5
j

4!
max
[3/5,1]

|F4(t)|∥u(5)∥ ≤
h5
j

4!
0.00044∥u(5)∥.

If t ∈ [0, 3/5] we present I2 in the form: I2 =
∫ τ∗

t
+
∫ 1

τ∗ .
We obtain

|I2| ≤
h5
j

4!
( max
[0,3/5]

|K1(t)|+ max
[0,3/5]

|K2(t)|)∥u(5)∥,

where

K1(t) =
9t2(5t2 − 6t+ 2)2(t− 1)5

10(3t− 2)4(5t− 6)4
(6750t6 − 41175t5+

+102885t4 − 134204t3 + 95784t2 − 35388t+ 5292).
We find that max

[0,3/5]
|K1(t)| ≈ |K1(0.1887)| ≈ 0.005546,

K2(t) = 8
t2(5t− 3)5(t− 1)5

5(3t− 2)4(5t− 6)4
,

and we find that max
[0,3/5]

|K2(t)| ≈ |K2(0.266)| ≈ 0.0003155.
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Fig. 3. K1(t), t ∈ [0.6, 1] (left), K2(t), t ∈ [0.6, 1] (right)

Thus,

|I2| ≤
h5
j

4!
(0.00552 + 0.00032)∥u(5)∥ ≤

≤
h5
j

4!
0.00584∥u(5)∥.

We obtain that

|I3| ≤
h5
j

4!

∣∣∣∣max
t∈[0,1]

t8(t− 1)2
∣∣∣∣ ∥u(5)∥ ≤

h5
j

4!
(0.0067)∥u(5)∥.
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Finally we have for x ∈ [xj , xj+1]

|ũ(x)− u(x)| ≤ 0.000763h5
j∥u(5)∥[xj ,xj+1].

The proof is completed.

Table 1 shows actual and theoretical errors of approximation
of functions constructed with formula (1) when [a, b] =
[−1, 1], hj = 0.1. Calculations were done in Maple with
Digits=15.

TABLE 1.
ACTUAL AND THEORETICAL ERRORS WHEN

[a, b] = [−1, 1], hj = 0.1

u(x) max
[−1,1]

|u− ũ| max
[−1,1]

|u− ũ|

actual theoretical
errors errors

sin(3x) cos(5x) 0.12 · 10−4 0.12 · 10−3

cos(x) 0.61 · 10−9 0.64 · 10−8

cos(2x) 0.24 · 10−7 0.24 · 10−6

sin2(x) 0.12 · 10−7 0.12 · 10−6

sin16(πx) 0.11 · 10−2 0.13 · 10−1

sin(πx)

cos(πx/4)
0.11 · 10−6 0.11 · 10−5

1

(1 + 25x2)
0.21 · 10−3 0.24 · 10−2

Lemma 2. Let function u ∈ C(5)[a, b]. There are points
η, ζ ∈ [xj , xj+1] such that

u(x)− ũ(x) =
u(5)(η)

5!
(x− xj)

2(x− xj+1)
2(x− ζ),

x ∈ [xj , xj+1].

Proof. It can be shown that the next relations are fulfilled
on approximation (1):

1) ũ(xj) = u(xj),
2) ũ(xj+1) = u(xj+1),
3) ũ′(xj) = u′(xj),
4) ũ′(xj+1) = u′(xj+1),
5)
∫ xj+1

xj
ũ(x)dx =

∫ xj+1

xj
u(x)dx.

Firstly, let us notice that statements 1)-2) follow from the
next relations:

ωj,0(xj) = 1, ωj,0(xj+1) = 0,
ωj+1,0(xj) = 0, ωj+1,0(xj+1) = 1,
ωj,1(xj) = 0, ωj,1(xj+1) = 0,
ωj+1,1(xj) = 0, ωj+1,1(xj+1) = 0,
ω<0>
j (xj) = 0, ω<0>

j (xj+1) = 0.
Similarly, statements 3)-4) follow from the next relations:
ω′

j,0(xj) = 0, ω′
j,0(xj+1) = 0,

ω′
j+1,0(xj) = 0, ω′

j+1,0(xj+1) = 1,
ω′

j,1(xj) = 1, ω′
j,1(xj+1) = 0,

ω′<0>
j (xj) = 0, ω′<0>

j (xj+1) = 0.
Finally, statement 5) follows from the relations:∫ xj+1

xj
ωj,0(x)dx = 0,

∫ xj+1

xj
ωj+1,0(x)dx = 0,∫ xj+1

xj
ωj,1(x)dx = 0,

∫ xj+1

xj
ωj+1,1(x)dx = 0,∫ xj+1

xj
ω<0>
j (x)dx = 1.

Further, let us notice that the next equality follows from (1)-
(2) for u(x) = C = const:

C = Cωj,0(x) + Cωj+1,0(x) + Chj ω
<0>
j (x).

Now we can find the point ζ such that u(ζ)hj =∫ xj+1

xj
u(ξ)dξ. Let us take an approximation ũ(x), x ∈

[xj , xj+1], in the form:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

u(ζ)hjω
<0>
j (x). (3)

Obviously ζ is the point of interpolation. It follows from
the relation:

ωj,0(x) + ωj+1,0(x) + hjω
<0>
j (x) = 1.

Thus, from (2) we obtain:

ũ(ζ)=u(ζ)
(
ωj,0(x) + ωj+1,0(x) + hjω

<0>
j (x)

)
=u(ζ).

Approximation (3) has the next points of Hermit interpolation:
xj with the second multiplicity, xj+1 with the second multi-
plicity, and ζ. The remainder term of Hermit interpolation in
our case is as follows:

u(5)(η)

5!
(x− xj)

2(x− xj+1)
2(x− ζ).

The proof is completed.

Corollary. If M = max
x∈[a,b]

|u(5)(x)| and we put x = xj+thj ,

t ∈ [0, 1], ζ = xj + Thj , T ∈ [0, 1], then

|ũ(xj + thj)− u(xj + thj)| ≤
Mh5

j

5!
t2(t− 1)2|t− T |.

The proof is evident.

Example. Let us take u(x) = sin(3x) cos(5x), xj = 0,
xj+1 = 1. We obtain

∫ 1

0
u(t)dt ≈ u(0.841) ≈ −0.282 and∫ 1

0
u(t)dt ≈ u(0.378) ≈ −0.282.

Denote ζ1 = 0.378, ζ2 = 0.841. For ζ1 we have
|ũ(x)− u(x)| ≤ 0.0000195, For ζ2 we have |ũ(x)− u(x)| ≤
0.0000349. Thus the theoretical error is |ũ(x) − u(x)| ≤
0.0000195, x ∈ [0, 1]. The actual error is |ũ(x) − u(x)| ≤
0.000012, x ∈ [0, 1].

Lemma 3. Let function u ∈ C(5)[a, b]. M =
max

[xj ,xj+1]
|u(5)(x)| The next statement is valid:

|u(x)− ũ(x)| ≤ 0.0625h5
j

M

5!
, x ∈ [xj , xj+1]. (4)

Proof follows from Lemma 2 and the relations

max
x∈[xj ,xj+1]

|(x− xj)
2(x− xj+1)

2| ≤ 0.0625h4
j ,

|x− ζ| ≤ hj if x, ζ ∈ [xj , xj+1].

Table 2 shows actual and theoretical errors of approximation
of functions constructed with formulae (1), (4) when [a, b] =
[−1, 1], hj = 0.1.
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TABLE 2. ACTUAL AND THEORETICAL ERRORS

WHEN [a, b]=[−1, 1], hj=0.1

u(x) max
[−1,1]

|u− ũ| max
[−1,1]

|u− ũ|

ACTUAL THEORETICAL
ERRORS ERRORS

sin(3x) cos(5x) 0.12 · 10−4 0.20 · 10−4

cos(x) 0.61 · 10−9 0.84 · 10−9

cos(2x) 0.24 · 10−7 0.29 · 10−7

1

(1 + 25x2)
0.21 · 10−3 0.44 · 10−3

III. INTERVAL EVALUATION

Here we assume that the values of the function, its first
derivative, and the values of the integral over the given
intervals are known without rounding errors and measurement
errors. Our aim is the following: to use given data to obtain
the boundaries of the variation of approximation as closely
as possible with no calculating approximation in points in the
interval.

Approximation (1) can be written in the form:

ũp(xj + thj) = C4t
4 + C3t

3 + C2t
2 + C1t+ C0, (5)

t ∈ [0, 1]. where C0 = u(xj), C1 = u′(xj)hj ,
C2 = −18u(xj) − 12u(xj+1) − (9/2)u′(xj)hj +

(3/2)u′(xj+1)hj + 30
xj+1∫
xj

u(t)dt/hj ,

C3 = 32u(xj) + 28u(xj+1) + 6u′(xj)hj − 4u′(xj+1)hj −

60
xj+1∫
xj

u(t)dt/hj ,

C4 = −15u(xj) − 15u(xj+1) − (5/2)u′(xj)hj +

(5/2)u′(xj+1)hj + 30
xj+1∫
xj

u(t)dt/hj .

We shall use techniques from interval analysis. Suppose
a1, a2, b1, b2 are real numbers. The result of the operations
between the intervals A = [a1, a2] and B = [b1, b2] can be
obtained with the next formulae (see [9])
1. A+B = [a1 + b1, a2 + b2],

2. A−B = [a1 − b2, a2 − b1] = A+ [−1,−1] ·B,
3. A · B = [min{a1b1, a1b2, a2b1, a2b2},
max{a1b1, a1b2, a2b1, a2b2}],
4. A : B = [a1, a2] · [1/b2, 1/b1].

We can put T = [0, 1] instead of t, thus we have Xj =
xj + Thj = [xj , xj+1] in:

ũp(xj + Thj) = C4T
4 + C3T

3 + C2T
2 + C1T + C0. (6)

Using operations 1–4 between the intervals mentioned
above and the rule:
T k = [min

t∈T
T k,max

t∈T
T k], k = 1, 2, 3, 4, we receive the

interval Zp
j = ũp(xj + Thj), that contains the result of the

approximation of the function u on the interval Xj .
Besides scheme (5) we can also use the Horner scheme to

represent the approximation function errors. If x = xj + thj ,
t ∈ [0, 1], we can transform (5) to the form:

ũH(xj + thj) = (C0 + t(C1 + t(C2 + t(C3 + t(C4))))). (7)

Now we can put T = [0, 1] instead of t in (7). Therefore the re-
sult of the approximation of the function u(x), x ∈ [xj , xj+1]
is contained in the evaluation interval ZH

j = ũH(Xj):

ũH(Xj) = (C0 + T (C1 + T (C2 + T (C3 + T (C4))))). (8)

Now we will construct one more expression through which
the values of u are estimated. Our aim is to find interval
extension with the widths as narrow as possible. We use
the result from [1] about possibility representation of the
polynomial when interval extension equals to the range of
a function. Our aim is to find the expression of a function
ũ(xj + thj) that provides equality the interval evaluation of
some function to its range.

Suppose the hypothesis of Lemma 1 are fulfilled. Suppose
C4 ̸= 0. We put NP = A0((A1 + t)2 + A3)

2 + A4 where
A0, A1, A3, A4 we have to determine. We can write NP as
the following NP = K0+K1t+K2t

2+K3t
3+K4t

4, where
K0 = A0(A

2
1 +A3)

2 +A4, K1 = 4A0(A
2
1 +A3)A1,

K2 = A0(6A
2
1 + 2A3), K3 = 4A0A1, K4 = A0.

Solving the system of equations: K4 = C4, K3 =
C3,K2 = C2, K0 = C0,

A0 = C4, A1 = C3/(4C4), (9)

A3 = (−3C2
3 + 8C2C4)/(16C

2
4 ), (10)

A4=
(−C4

3 + 8C2
3C2C4 − 16C2

2C
2
4 + 64C0C

3
4 )

(64C3
4 )

. (11)

From RS = NP − PP , where
PP = ũ(xj + thj) = C0 + C1t+ C2t

2 + C3t
3 + C4t

4, we
obtain RS = −t(C3

3 − 4C3C4C2 + 8C1C
2
4 )/(8C

2
4 ). Finally

the polynomial ũ(xj + thj) is transformed to the form:

ũN (xj + thj) = A0((A1 + t)2 +A3)
2 +A4+

t(C3
3 − 4C3C4C2 + 8C1C

2
4 )/(8C

2
4 ),

where we find from (9)-(11). Here the powers appearing in
the expression are evaluated as Xk = [min

x∈X
xk,max

x∈X
xk]. The

evaluation interval of ũ(xj + thj), t ∈ [0, 1] = T is the
following:

ũN (xj + Thj) = A0((A1 + T )2 +A3)
2 +A4+

T (C3
3 − 4C3C4C2 + 8C1C

2
4 )/(8C

2
4 ). (12)

Let us examine each of the methods through several func-
tions and see the difference between the width of the intervals
which include the values of the approximation of the function
u. The following calculations show that for the functions
which were examined we receive the relation: ũH(Xj) =
ZH
j ⊂ ũp(Xj).
Example 1. First let us take u(x) = cos(x), Xj =

[xj , xj+1] = [−0.1, 0.2]. Figure 4 (left) shows us the interval
Zp
j = ũp(Xj) = [0.94978, 1.02529], when we use method (6)

and Figure 4 (right) shows us the interval ZH
j = uH(Xj) =

[0.97973, 1.024954], when we use method (8).
Example 2. Now let us take u(x) = x4 − x2, Xj =

[xj , xj+1] = [−0.1, 0.2]. Figure 5 (left) shows us the interval
Zp
j = ũp(Xj) = [−0.1053, 0.057], when we use method (6)

and Figure 5 (right) shows us the interval ZH
j = ũH(Xj) =
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Fig. 4. Plots of the function u(x) = cos(x), Xj = [−0.1, 0.2], obtained
with method (6) (left), and obtained with method (8) (right)

[−0.0465, 0.0489], when we use method (8). Method (8) for
both functions gives us a better result: the width of the interval
ZH
j is less if we use the Horner scheme instead of polynomial

scheme (6).
We have ZjH ⊂ Zp

j . But there may exist functions for
which we can receive Zp

j ⊂ ZjH .
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Fig. 5. Plots of the function u(x) = x4 − x2, Xj = [−0.1, 0.2], and the
interval evaluation : obtained with method (6) (left), and obtained with method
(8) (right)

The following examples show the results of the interval
evaluation of derivatives of functions.

Example 1a. Here we take the function from example 1 and
calculate the evaluation interval for its derivative. We have
u′(x) = − sin(x), Xj = [xj , xj+1] = [−0.1, 0.2].

Figure 6 (left) shows us the interval Zp
j = ũ′p(Xj) =

[−0.2032, 0.1043], when we use method (6) and Figure
6 (right) shows us the interval ZH

j = ũ′H(Xj) =
[−0.204, 0.0998], when we use method (8).
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Fig. 6. Plots of the function u′(x) = −sin(x), Xj = [−0.1, 0.2], and the
interval evaluation: obtained with method (6) (left), and obtained with method
(8) (right)

Example 2a. Here we take the function from example 2
u(x) = x4 − x2, Xj = [−0.1, 0.2].

Figure 7 (left) shows us the interval Zp
j = ũ′p(Xj) =

[−0.476, 0.304], when we use method (6) and Figure 7 (right)
shows us the interval ZH

j = ũ′H(Xj) = [−0.4868, 0.196],
when we use method (8).

Example 3. Here we take the function from Example 1
and Example 2: u(x) = x4 − x2, u(x) = cos(x), Xj =
[xj , xj+1] = [−0.1, 0.2].

Figure 8 (left) shows us the evaluation interval ũN (xj +
Thj) = PP (Xj) = [0.98005, 0.99999904], when we use
method (12) for u(x) = cos(x) and Figure 8 (right) shows

–2
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–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x
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1
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–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Fig. 7. Plots of the function u′(x), u = x4−x2, Xj = [−0.1, 0.2], and the
interval evaluation: obtained with method (6) (left), and obtained with method
(8) (right)

us the evaluation interval ũN (xj + Thj) = PP (Xj) =
[−0.0383999, 0], when we use method (12), u(x) = x4 − x2.

We should notice that we have the range W (u,X) of
the function u = cos(x), x ∈ [−0.1, 0.2] = Xj as
W (cos, Xj) = [cos(−0.1), cos(0.2)] ≈ [0.9950, 0.98007] ⊂
[0.98005, 0.99999904] = ũN (Xj), and we have the range
of the function u(x) = x4 − x2 as the following W (x4 −
x2, Xj) = [u(−0.1), u(0.2)] = [−0.0099,−0.0384] ⊂
[−0.0383999, 0.0] = ũN (Xj).
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x

Fig. 8. Plots of the function u(x), and the interval evaluation obtained with
method (??), Xj = [−0.1, 0.2]: u = cos(x) (left), and u = x4 − x2 (right)

Example 4. Here we take the function from [1] u(x) =
x2(x2/3 +

√
2 sin(x)) −

√
3/19, Xj = [xj , xj+1] =

[−0.1, 0.2]. The range of the function u(x), x ∈
[−0.1, 0.2] is the next: W (u,Xj) = [u(0.2), u(−0.1)] =
[−0.0793888010,−0.09253909320].

When we use method (12), the evaluation interval ũN (xj +
Thj) is the following: [−0.07938880,−0.0925390932] =
W (u,Xj). It is equals to the range of the function. When we
use the Horner method the evaluation interval is the following:
[−0.081613529,−0.0925390932] that is a little wider then the
range of the function.

The last two examples provide an opportunity to hypoth-
esize that scheme (12) gives the best interval evaluation if
C4 ̸= 0.

IV. INTERVAL EVALUATION OF APPROXIMATION OF
FUNCTION OF TWO VARIABLES

On every line parallel to axis y, we can construct the
approximation in the form:

ũ(y) = u(yk)ωk,0(y) + u(yk+1)ωk+1,0(y)+

u′(yj)ωk,1(y) + u′(yk+1)ωk+1,1(y)+

+

yk+1∫
yk

u(t)dt ω<0>
k (y), y ∈ [yk, yk+1].
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Now we have the following formulae for y = yk + t1h,
t1 ∈ [0, 1], h = yk+1 − yk:

ωk,0(yk + t1h) = −18 t21 + 32 t31 − 15 t41 + 1,

ωk+1,0(yk + t1h) = −12 t21 + 28 t31 − 15 t41,

ωk,1(yk+t1h)=−(9/2)h t21+6h t31−(5/2)h t41+t1 h,

ωk+1,1(yk + t1h) = (3/2)h t21 − 4h t31 + (5/2)h t41,

ω<0>
k (yk + t1h) = (30 t21 − 60 t31 + 30 t41)/h.

If (x, y) ∈ Ωj,k then we get the next expression using the
tensor product:

ũ(x, y) =
1∑

i=0

1∑
p=0

u(xj+i, yk+p) ωj+i,0(x) ωk+p,0(y)+

+
1∑

i=0

1∑
p=0

u′
y(xj+i, yk+p) ωj+i,0(x) ωk+p,1(y)+

1∑
i=0

yk+1∫
yk

u(xj+i, t)dtdy ωj+i,0(x)ω
<0>
k (y)+

1∑
i=0

( xj+1∫
xj

u(t, yk+i)dtω
<0>
j (x)ωk+i,0(y)+

xj+1∫
xj

u′
y(t, yk+i)dtω

<0>
j (x)ωk+i,1(y)

)
+

yk+1∫
yk

xj+1∫
xj

u(x, y)dxdyω<0>
k (y)ω<0>

j (x)+

1∑
i=0

u′
x(xj , yk+i)dtωj,0(x)ωk+i,0(y)+

1∑
i=0

u′′
xy(xj , yk+i) dt ωj,0(x) ωk+i,1(y)+

yk+1∫
yk

u′
x(xj , t)dt ωj,1(x)ω

<0>
k (y). (13)

For obtaining the lower and the upper boundary we shall use
the Horner method for variable x and after that for variable y.
Let us take xj = yk = 0, xj+1 = yk+1 = 0.2. Figure 9 and
10 show the plots of the function and the intervals evaluation
from different angles.

For obtaining the lower and the upper boundary of the
partial derivatives of the functions of two variables we we
shall use the Horner method for variable x and after that for
variable y. We use formula (13) where we replace ω with their
derivatives.

Here we the next formulae are useful:
ω′
j,0(xj + thj) = (−36t+ 96t2 − 60t3)/hj ,

ω′
j+1,0(xj + thj) = (−24t+ 84t2 − 60t3)/hj ,

ω′
j,1(xj + thj) = (hj − 9thj + 18hjt

2 − 10hjt
3)/hj ,
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Fig. 9. Plots of the function cos(x) cos(y) and the evaluation interval, when
Xj = Yk = [0, 0.2]
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Fig. 10. Plots of the function cos(x − y) sin(x − y) and the evaluation
interval, when Xj = Yk = [0, 0.2]

ω′
j+1,1(xj + thj) = (3thj − 12hjt

2 + 10hjt
3)/hj ,

ω′
j
<0>

(xj + thj) = (60t− 180t2 + 120t3)/hj
2.

For example let us take u(x, y) = sin(x − y) cos(x − y),
u′
x(x, y) = cos(x − y)2 − sin(x − y)2 and u(x, y) = 1/(1 +

(x+ y)2), u′
x(x, y) = −2(x+ y)/(1 + (x+ y)2)2.

Figure 11 shows the plots of the function u′
x(x, y) =

cos(x−y)2−sin(x−y)2 and the intervals evaluation (left) and
also u′

x(x, y) = −2(x+ y)/(1 + (x+ y)2)2 and the intervals
evaluation (right).
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Fig. 11. Plots of the function cos(x− y)2 − sin(x− y)2 and the evaluation
interval (left), u′

x(x, y) = −2(x + y)/(1 + (x + y)2)2 and the intervals
evaluation (right) when Xj = Yk = [0, 0.2]

V. ABOUT LEFT INTEGRO-DIFFERENTIAL SPLINES

Let the function u(x) be such that u ∈ C5([a− h, b]). We
have the grid of interpolation nodes {xj} such that x−1 =
a− h, x0 = a, xj+1 = xj + h, xn = b.

Suppose that u(xj), u′(xj), j = 0, 1, . . . , n,
∫ xj+1

xj
u(ξ)dξ,

j = −1, . . . , n−1, are known. We denote ũ(x) as an approxi-
mation of the function u(x) in the interval [xj , xj+1] ⊂ [a, b]:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

+

xj∫
xj−1

u(ξ)dξ ω<−1>
j (x). (14)
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We obtain the basic splines ωj,0(x), ωj+1,0(x), ωj,1(x),
ωj+1,1(x), ω<−1>

j (x) from the system:

ũ(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5. (15)

If x = xj + t h, t ∈ [0, 1], then the basic splines can be
written in the form:

ωj,0(xj + t h) = 1
31 (15t

2 + 62t+ 31)(t− 1)2,
ωj+1,0(xj + t h) = − 1

31 t
2(−48− 28t+ 45t2),

ωj,1(xj + t h) = 1
62 th(85t+ 62)(t− 1)2,

ωj+1,1(xj + t h) = 1
62ht

2(35t+ 27)(t− 1),
ω<−1>
j (xj + t h) = 30

31 t
2(t− 1)2/h.

Lemma 4. Let function u ∈ C(5)[a− h, b]. There are points
η ∈ [xj−1, xj+1], ζ ∈ [xj−1, xj ] such that

u(x)− ũ(x) =
u(5)(η)

5!
(x− xj)

2(x− xj+1)
2(x− ζ),

x ∈ [xj , xj+1].

Proof. We have approximation (14). It can be shown that
the next relations are fulfilled:

1) ũ(xj) = u(xj),
2) ũ(xj+1) = u(xj+1),
3) ũ′(xj) = u′(xj),
4) ũ′(xj+1) = u′(xj+1),
5)
∫ xj

xj−1
ũ(x)dx =

∫ xj

xj−1
u(x)dx.

The proof is similar to Lemma 2.
Further, let us notice that the next equality follows from

(14)- (15) for u(x) = C = const:

C = Cωj,0(x) + Cωj+1,0(x) + Chω<−1>
j (x).

Now we can find the point ζ such that u(ζ)h =∫ xj

xj−1
u(ξ)dξ. Let us take an approximation ũ(x), x ∈

[xj , xj+1], in the form:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

u(ζ)hω<−1>
j (x). (16)

Obviously ζ is the point of interpolation. It follows from
the relation:

ωj,0(x) + ωj+1,0(x) + hjω
<−1>
j (x) = 1.

Thus, from (14)-(15) we obtain:

ũ(ζ)=u(ζ)
(
ωj,0(x) + ωj+1,0(x) + hω<−1>

j (x)
)
=u(ζ).

Approximation (16) has the next points of Hermit interpo-
lation: xj with the second multiplicity, xj+1 with the second
multiplicity, and ζ. The remainder term of Hermit interpolation
in our case is as follows:

u(5)(η)

5!
(x− xj)

2(x− xj+1)
2(x− ζ).

The proof is completed.

Corollary. If M = max
x∈[a−h,b]

|u(5)(x)| and we put x = xj +

th, t ∈ [0, 1], ζ = xj−1 + Th, T ∈ [0, 1], then

|ũ(xj + th)− u(xj + th)| ≤ Mh5

5!
t2(t− 1)2|t− T + 1|.

Lemma 5. Let function u ∈ C(5)[a − h, b]. M =
max

[xj−h,xj+1]
|u(5)(x)|. The next statement is valid:

|u(x)− ũ(x)| ≤ 2 · 0.0625h5M

5!
, (17)

x ∈ [xj , xj+1].
Proof follows from Lemma 4 and the relations

max
x∈[xj ,xj+1]

|(x− xj)
2(x− xj+1)

2| ≤ 0.0625h4,

|x− ζ| ≤ 2h if x ∈ [xj , xj+1], ζ ∈ [xj−1, xj ].

Table 3 shows actual and theoretical errors of approximation
of functions constructed with formulae (14), (17) when [a, b] =
[−1, 1], h = 0.1.

TABLE 3.
ACTUAL AND THEORETICAL ERRORS [a, b]=[−1, 1], h=0.1

u(x) max
[−1,1]

|u− ũ| max
[−1,1]

|u− ũ|

ACTUAL THEORETICAL
ERRORS ERRORS

sin(3x) cos(5x) 0.109 · 10−3 0.17 · 10−3

cos(x) 0.565 · 10−8 0.88 · 10−8

cos(2x) 0.218 · 10−6 0.33 · 10−6

1

(1 + 25x2)
0.141 · 10−2 0.33 · 10−2

VI. ABOUT RIGHT INTEGRO-DIFFERENTIAL SPLINES

Let the function u(x) be such that u ∈ C5([a, b + h]). We
have the grid of interpolation nodes {xj} such that x0 = a,
xj+1 = xj + h, xn = b, xn+1 = b+ h.

Suppose that u(xj), u′(xj), j = 0, 1, . . . , n,
∫ xj+1

xj
u(ξ)dξ,

j = 0, . . . , n, are known. We denote ũ(x) as an approximation
of the function u(x) in the interval [xj , xj+1] ⊂ [a, b]:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

+

xj+2∫
xj+1

u(ξ)dξ ω<1>
j (x). (18)

We obtain the basic splines ωj,0(x), ωj+1,0(x), ωj,1(x),
ωj+1,1(x), ω<1>

j (x) from the system:

ũ(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5. (19)

If x = xj + t h, t ∈ [0, 1], then the basic splines can be
written in the form:
ωj,0(xj + t h) = −(45t2 − 62t− 31)(t− 1)2/31,
ωj+1,0(xj + t h) = t2(15t2 + 108− 92t)/31,
ωj,1(xj + t h) = −th(35t− 62)(t− 1)2/62,
ωj+1,1(xj + t h) = −ht2(t− 1)(85t− 147)/62,
ω<−1>
j (xj + t h) = 30

31h t
2(t− 1)2.

Lemma 6. Let function u ∈ C(5)[a, b+ h]. There are points
η ∈ [xj , xj+2], ζ ∈ [xj+1, xj+2] such that

u(x)− ũ(x) =
u(5)(η)

5!
(x− xj)

2(x− xj+1)
2(x− ζ),
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when x ∈ [xj , xj+1].

Proof. It can be shown that the next relations are fulfilled
on approximation (18):

1) ũ(xj) = u(xj),
2) ũ(xj+1) = u(xj+1),
3) ũ′(xj) = u′(xj),
4) ũ′(xj+1) = u′(xj+1),
5)
∫ xj+2

xj+1
ũ(x)dx =

∫ xj+2

xj+1
u(x)dx.

The proof is similar to Lemma 2. Further, let us notice that
the next equality follows from (18)- (19) for u(x) = C =
const:

C = Cωj,0(x) + Cωj+1,0(x) + Chω<1>
j (x).

Now we can find the point ζ such that u(ζ)h =∫ xj

xj−1
u(ξ)dξ. Let us take an approximation ũ(x), x ∈

[xj , xj+1], in the form:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

u(ζ)hω<1>
j (x). (20)

Obviously ζ is the point of interpolation. It follows from
the relation:

ωj,0(x) + ωj+1,0(x) + hω<1>
j (x) = 1.

Thus, from (18) we obtain:

ũ(ζ)=u(ζ)
(
ωj,0(x) + ωj+1,0(x) + hω<1>

j (x)
)
=u(ζ).

Approximation (20) has the next points of Hermit interpo-
lation: xj with the second multiplicity, xj+1 with the second
multiplicity, and ζ. The remainder term of Hermit interpolation
in our case is as follows:

u(5)(η)

5!
(x− xj)

2(x− xj+1)
2(x− ζ).

The proof is completed.

Corollary. If M = max
x∈[a,b+h]

|u(5)(x)| and we put x = xj +

th, t ∈ [0, 1], ζ = xj+1 + Th, T ∈ [0, 1], then

|ũ(xj + th)− u(xj + th)| ≤ Mh5

5!
t2(t− 1)2|t− T − 1|.

The proof is evident.
Lemma 7. Let function u ∈ C(5)[a, b + h]. M =
max

[xj ,xj+2]
|u(5)(x)|. The next statement is valid:

|u(x)− ũ(x)| ≤ 2 · 0.0625h5M

5!
, x ∈ [xj , xj+1]. (21)

Proof follows from Lemma 6 and the relations

max
x∈[xj ,xj+1]

|(x− xj)
2(x− xj+1)

2| ≤ 0.0625h4,

|x− ζ| ≤ 2h, if x ∈ [xj , xj+1] and ζ ∈ [xj+1, xj+2].

Table 4 shows actual and theoretical errors of approximation
of functions constructed with formulae (18), (21) when [a, b] =
[−1, 1], h = 0.1.

TABLE 4.
ACTUAL AND THEORETICAL ERRORS WHEN [a, b] = [−1, 1],

h = 0.1

u(x) max
[−1,1]

|u− ũ| max
[−1,1]

|u− ũ|

ACTUAL THEORETICAL
ERRORS ERRORS

sin(3x) cos(5x) 0.109 · 10−3 0.17 · 10−3

cos(x) 0.565 · 10−8 0.88 · 10−8

cos(2x) 0.218 · 10−6 0.33 · 10−6

1

(1 + 25x2)
0.141 · 10−2 0.33 · 10−2

VII. CONCLUSION

Here we construct the intervals evaluation which include
the values of the function of one variable and parallelepipeds
which include the values of the functions of two variables
when we know the values of the function, the value of its
first derivative in the nodes and the value of the integrals
over the net intervals. So we don’t need to calculate the
approximation of the function at every point. Using techniques
from interval analysis, we construct the two-sided estimations
of approximation of the functions with integro-differential
polynomial splines. Before constructing the interval extension
it is recommended to check the error of approximation using
the results given in Lemmas.
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